Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

M. Rafizadeh* and V. Amani
Department of Chemistry, Teacher Training University, 49 Mofateh Avenue, 15614 Tehran, Iran

Correspondence e-mail:

rafizadeh@saba.tmu.ac.ir

Key indicators

Single-crystal X-ray study
$T=145 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.041$
$w R$ factor $=0.101$
Data-to-parameter ratio $=17.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

Dihydronium bis(2,6-diaminopyridinium) tris(pyridine-2,6-dicarboxylato- $\kappa^{3} O, O^{\prime}, N$)dysprosate(III) dihydrate

The reaction of dysprosium(III) chloride with $\left[\mathrm{H}_{2} \text { pyda }\right]^{2+}$ [pydc] ${ }^{2-}$ (pyda is 2,6 -diaminopyridine and H_{2} pydc is $2,6-$ pyridinedicarboxylic acid) in an aqueous solution leads to the formation of the title Dy ${ }^{\text {III }}$ complex, $\left(\mathrm{H}_{5} \mathrm{O}_{2}\right)\left(\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{3}\right)_{2^{-}}$ $\left[\mathrm{Dy}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{NO}_{4}\right)_{3}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$. The Dy ion lies on a twofold rotation axis and is nine-coordinated with a distorted tricapped trigonal-prismatic geometry. The dihydronium cation $\left(\mathrm{H}_{5} \mathrm{O}_{2}\right)^{+}$is located on a twofold axis, the longer $\mathrm{O}-\mathrm{H}$ bond distance being 1.225 Å.

Comment

We have recently become interested in metal complexes with a pyridine-containing ligand system (Rafizadeh et al., 2004). We present here the structure of the title compound, (I), which includes a pyridinedicaboxylate (pydc) anion and a diaminopyridinium (pyda) cation.

(I)

The structure of (I) comprises $\mathrm{Dy}^{\mathrm{III}}$ complex anions, free pyda cations, dihydronium cations $\left(\mathrm{H}_{5} \mathrm{O}_{2}\right)^{+}$and uncoordinted water molecules (Fig. 1). The Dy ion lies on a twofold rotation axis and the nine-coordinate $\mathrm{Dy}^{\mathrm{III}}$ complex assumes a distorted tricapped trigonal-prismatic geometry, formed by three pydc dianions. This is comparable to the situation found in the Yb analogue (Rafizadeh et al., 2004). The $\mathrm{Dy}-\mathrm{O}$ and $\mathrm{Dy}-\mathrm{N}$ bond distances (Table 1) agree with those found in previously reported structures (Fernandes et al., 2001).

Atom $\mathrm{H} 1 W C$ atom of the dihydronium cation lies on a twofold axis. The $\mathrm{O} 1 W-\mathrm{H} 1 W C$ bond distance of $1.225 \AA$ and $\mathrm{O} 1 W-\mathrm{H} 1 W C-\mathrm{O} 1 W^{\mathrm{ii}}$ bond angle of 170° [symmetry code: (ii) $\left.-x-\frac{1}{2}, y,-z+\frac{1}{2}\right]$ are comparable to the values found in the Yb analogue (1.218 and $1.221 \AA$ and 170°; Rafizadeh et al., 2004) and in the $\mathrm{Gd}^{\mathrm{III}}$ analogue [1.216 \AA and 164°; Rafizadeh et al., 2005). These also agree with the values deduced from $a b$ initio computations (1.2 \AA and 173.5°; Ojamae et al., 1995).

Experimental

To a solution of [H_{2} pyda][pydc] $(0.5 \mathrm{~g}, 1.8 \mathrm{mmol})$ in water (100 ml) was added a solution of $\mathrm{DyCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.226 \mathrm{~g}, 0.6 \mathrm{mmol})$ in water
$(20 \mathrm{ml})$ and the resulting pale-yellow solution was stirred for 30 min . This solution was left to evaporate slowly at room temperature, affording single crystals of (I) after one week; yield 73.4\%, m.p. 536539 K.

Crystal data

$\left(\mathrm{H}_{5} \mathrm{O}_{2}\right)\left(\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{3}\right)_{2}-$
$\left[\mathrm{Dy}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{NO}_{4}\right)_{3}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=951.17$
Monoclinic, $P 2 / n$
$a=9.654$ (2) A
$b=10.579$ (2) \AA
$c=17.972$ (4) \AA
$\beta=94.483$ (4) ${ }^{\circ}$
$V=1830.0(7) \AA^{3}$
$Z=2$

Data collection

Bruker SMART 1000 CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1998) $T_{\text {min }}=0.406, T_{\text {max }}=0.653$
18268 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.101$
$S=1.03$
4508 reflections
259 parameters
H-atom parameters constrained
$D_{x}=1.726 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1024 reflections
$\theta=3-30^{\circ}$
$\mu=2.13 \mathrm{~mm}^{-1}$
$T=145$ (2) K
Prism, yellow
$0.30 \times 0.25 \times 0.20 \mathrm{~mm}$

4508 independent reflections
3876 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.095$
$\theta_{\text {max }}=28.5^{\circ}$
$h=-12 \rightarrow 12$
$k=-13 \rightarrow 13$
$l=-23 \rightarrow 23$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.053 P)^{2}\right. \\
& \quad+1.585 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=2.75 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.14 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected bond lengths (\AA).

Dy1-O1	$2.389(3)$	Dy1-N1	$2.495(3)$
Dy1-O3	$2.424(3)$	Dy1-N2	$2.492(4)$
Dy1-O5	$2.418(3)$		

H atoms bonded to O and N atoms were located in a difference Fourier map and refined as riding in their as-found relative positions, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (carrier). Other H atoms were positioned geometrically with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and refined in a riding-model approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The maximum residual electron density peak is $1.12 \AA$ from Dy1.

Data collection: SMART (Bruker, 1998); cell refinement: SAINTPlus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to

Figure 1
The molecular structure of (I), with 30% probability displacement ellipsoids [symmetry codes: (i) $-x+\frac{1}{2}, y,-z+\frac{1}{2}$; (ii) $-x-\frac{1}{2}, y,-z+\frac{1}{2}$].
refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1998); software used to prepare material for publication: SHELXTL.

We are particularly grateful to Dr F. M. Dolgushin of the General and Technical Chemistry Division, Academy of Science of Russia, for collecting the X-ray crystallographic data.

References

Bruker (1998). SMART (Version 5.059) and SAINT-Plus (Version 6.01). Bruker AXS Inc., Madison, Wisconsin, USA.
Fernandes, A., Jaud, J., Dexpert-Ghys, J. \& Brouca-Cabarrecq, C. (2001). Polyhedron, 20, 2385-2391.
Ojamae, L., Shavitt, I. \& Singer, S. J. (1995). Int. J. Quantum Chem, 29, $657-$ 660.

Rafizadeh, M., Ranjbar, M. \& Amani, V. (2004). Acta Cryst. E60, m479-m481.
Rafizadeh, M., Ranjbar, M. \& Amani, V. (2005). Anal. Sci. 21, 113-114.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1998). SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

